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ABSTRACT 

Background. Cancer is the second and most common cause of death in developed countries, and epidemiological 

evidence suggests a similar trend in developing countries. Cancer is currently the cause of twelve percent of all deaths 

worldwide. The ERK pathway contains important modulators suitable for growth and proliferation, especially tumors. 

Oxidative stress, growth factors, increased intracellular calcium levels, and stimulation of glutamate receptors activate 

this pathway. The Sprouty/Spred family acts as definitive negative regulators of the Ras/Raf/ERK signal. View Points. 

The Sprouty/Spred family specifically inhibits ERK activity in response to a wide range of factors such as fibroblast 

growth factor (FGF), platelet growth factor (PDGF), vascular endothelial growth factor (VEGF), brain-derived 

neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell-derived growth factor (GDNF). This family 

can inhibit MAPK activity and affect the downstream level. Typically, these proteins inhibit growth by modulating 

RTK signaling and suppressing the MAPK_ERK signaling pathway, suppressing cell proliferation, migration, and 

differentiation. On the other hand, through tyrosine kinase receptors, VEGF causes growth, proliferation, survival, and 

migration of endothelial cells and increases vascular permeability. Objectives. Research on the effect of exercise at 

various levels on the Sperouty/Spred family in inactive healthy individuals and patients, especially in cancer situations, 

has not been performed. So, future research can be directed in this way. 
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INTRODUCTION 
Phosphorylation is a simple change that occurs 

when one or more phosphate groups are added to a 

protein molecule, such as the glycolysis pathway, 

which is essential in the metabolism of living 

organisms. This action is usually based on the 

amino acid serine or threonine, but in rare cases, it 

is performed on the amino acid tyrosine and 

sometimes on lysine. The phosphate entry into a 

protein enters a negative charge, which causes 

conformation. This binding is done by enzymes 

called kinases (1). To date, more than a hundred 

types of protein kinases are known, but one of the 

most famous is the large family of Mitogen-

Activated Protein Kinases (MAPKs) that control 

numerous cellular functions. Mitogens are signals 

outside the cell that send messages about mitosis 

and cell division induction. 

The MAPK signaling pathway has been 

extensively studied in recent years. This pathway 

is critical in signal transduction from protein 

kinases and phosphatases. One of the subunits of 

MAPK is Extracellular signal–Regulated Kinases 

(ERKs), the most well-known kinase in this 

pathway (2, 3). 
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Threonine and tyrosine residues phosphorylated 

and activated ERK protein kinase (4). This protein 

activates many proteins and transcriptional factors 

for different purposes. ERK activation causes the 

expression of more than 600 genes (5), and its effect 

on gene expression transcription is achieved either 

by activating messaging pathways in the cytoplasm 

or by demyelinating and moving to the nucleus and 

phosphorylating transcription factors (6). In the 

cytosol, the ERK exerts its effects in this way, 

activating proteins such as p90 ribosomal S6 kinase 

(P90RSK) that transfers to the nucleus and activates 

the Serum Response Factor (SRF) transcription 

factors (7). In the nucleus, it can also activate agents 

such as ETS domain-containing protein (Elk1), 

Activating Transcription Factor 2 (ATF2), 

Activating Protein-1 (AP1), cAMP Responsive 

Element Binding (CREB), and Myocyte-specific 

enhancer factor 2C (MEF2C) (8-10). 

The activity of this transcription factor is 

expressed by genes involved in various processes 

such as mitochondrial biogenesis (11), 

angiogenesis (12), mitotic cell proliferation (13) 

and meiosis, and post-mitotic function such as 

differentiation (14), apoptosis (15) and cyclin D 

expression; helps regenerate muscle cells and 

repair muscle damage (16). The MAPK pathway, 

and especially the ERK, can be activated by many 

factors. Physical activity can also activate this 

pathway through various mechanisms such as 

growth factors secretion and muscle tension, 

oxidants, and pH reduction (16). 

On the other hand, the ERK pathway contains 

important modulators suitable for growth and 

proliferation. This pathway is activated by 

intracellular increases in calcium levels, oxidative 

stress, growth factors, and stimulation of glutamate 

receptors (17). The MAPK cascading process 

initiates cell proliferation responses, leading to Ras 

(Recovery Activation Signal) activation via agonists 

that stimulate protein kinase C and growth factors 

that act on tyrosine kinase receptors. In the 

cascading process, protein kinase C and Ras activate 

Raf (Rapidly Accelerated Fibrosarcoma) kinase, 

activating MAPK/ERK Kinase (MEK). 

Phosphorylated MEK activates and phosphorylates 

the ERK, which phosphorylates transcription 

factors, protein substrates, and other protein kinases 

that are important in promoting cell proliferation 

and other cellular responses. Altered activity levels 

of MAPK factors lead to altered transcription of 

essential genes in the cell cycle (18). 

New Regulators of Ras/Raf/Erk Pathway. 
The Sprouty/Spred family acts as definitive 

negative regulators of the Ras/Raf/ERK signal 

(19-22). Drosophila Sprouty was discovered as an 

FGF signal antagonist in 1998 (20, 21). In 

mammals, there are four Sprouty homologs 

(Sprouty 1-4). Sproutys was later shown to 

suppress ERK activation induced by various 

growth factors such as FGF, platelet-derived 

growth factor, VEGF-A, neurotrophic factor, and 

GDNF in a particular cell type and a specific 

growth factor (23). 

Many factors disrupt Ras/Raf/ERK pathway 

regulation in many cancers. Several negative 

regulators accurately quantify the Ras/Raf/ERK 

pathway, including Ras GTPase-activating 

proteins, MAPK phosphatases, and the 

Sprouty/Spred family (21). Since the 

Sprouty/Spred family is one of the essential 

suppressors of the Ras/Raf/ERK pathway, many 

researchers have further investigated the role of 

Sprouty and Spred as tumor suppressors during 

tumorigenesis and metastasis (23). 

It is believed that Sproutys have several 

mechanisms to suppress the Ras/Raf/ERK 

pathway. Sprouty generally acts upstream of Ras 

because it cannot suppress active Ras mutations 

(20). However, Sprouty4 inhibits VEGF-A-

induced ERK activity by direct binding to c-Raf 

(Mason et al., 2006). Interestingly, in mammals, 

Sproutys do not suppress the EGF signaling; 

Instead, they activate signaling by binding to c-

Cbl, an E3 ubiquitin-protein ligase for EGFR 

(21). Sprouty2 can also suppress Rac1 activation 

and cell migration through the tyrosine 

phosphatase 1B (21). In addition, Sprouty1 and 

Sprouty2 have been reported to be negative 

regulators of the TGF-β-Smad signaling (24). 

Spreds inhibit ERK activation in collaboration 

with Ras and neurofibromin and suppress 

phosphorylation and Raf activation (19, 25). 

Spreds can also regulate the activation of small 

GTPases, Ras, Rap1, and Rho (19). In Spred1, 

Ras/Raf/ERK pathway inhibition was known 

when the two tyrosine residues Y377/Y420 were 

phosphorylated (26). The other three tyrosine 

residues, Y303/Y343/Y353 in CRD, are essential 

for regulating Spred2 activity (27). 

The Sprouty/Spred family is induced by many 

signals from the tyrosine kinase receptor and acts 

as negative feedback regulators of Ras/Raf/ERK 

signaling (19-22). The mRNA and protein levels 
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of members of this family are highly regulated by 

various mechanisms, including epigenetic and 

post-translational changes (28, 29). 

The Sprouty/Spred family negatively 

regulates the VEGF-A and VEGF-C signaling 

pathways, and besides, angiogenesis and 

lymphangiogenesis are essential processes for 

tumor development (22). These findings suggest 

that the expression of the Sprouty/Spred family in 

the microscopic environment of the tumor also 

indirectly affects tumorigenesis and metastasis 

(30, 31). 

The Role of Physical Activity, Exercise, and 

Training on the Ras/Raf/Erk Pathway. 

However, studies have shown that physical 

activity increases the expression of ERK genes 

and proteins (32). In most of these studies, the 

response of ERK to one or more sessions of 

activity was evaluated, and immediately after the 

activity, the level of activity and the amount of 

phosphorylated ERK was examined. The ERK is 

activated immediately after the activity in trained 

and untrained cycling protocols in individuals 

(33-35), resistance and strength training (36-38), 

and in situ studies (15, 39, 40). However, few 

studies have examined the long-term adaptation 

of this protein and achieved different results. In 

this regard, it was reported that eccentric 

contraction of the biceps muscle increases total 

ERK and phosphorylation after 48 hours, But 

running downhill after 48 hours did not increase 

total ERK and phosphorylation (41). Another 

study reported a significant increase in the total 

ERK protein content of FHL muscle after eight 

weeks of resistance training (5 sessions per week) 

in male Sprague Dawley rats. However, no 

significant change was observed in its 

phosphorylated form, as long-term resistance 

training is probably not a proper intervention to 

activate ERK (42). 

Besides, there are enough reports about the 

positive effects of various types of physical 

activity and growth factors. A session of high-

intensity interval training (HIIT) on changes in 

serum vascular endothelial growth factor (VEGF) 

leads to the onset of the angiogenesis process 

(43). Also, ten weeks of HIIT, three sessions per 

week, and 40 minutes per session with an 

intensity of 70 to 75 maximal heart rate in men 

with prostate cancer significantly increased 

VEGF and FGF levels in the experimental group 

compared to the control group (44). 

However, the mechanisms underlying changes 

in exercise and training growth factors are poorly 

understood. Since Sprouty/Spred proteins have 

been shown to act downstream of a wide range of 

growth factor stimuli, including fibroblast growth 

factor (FGF), vascular endothelial growth factor 

(VEGF), platelet growth factor (PDGF), 

Hepatocyte growth factor, and nerve growth 

factor (NGF) (45), physical activity, exercise, and 

training seems to be able to affect Sprouty/Spred 

by affecting growth factors, which has not yet 

been studied in this situation. 

 

CONCLUSION  
Since most cancers occur in the elderly, it is 

expected that this disease's incidence and 

mortality will soon increase. Therefore, paying 

attention to the cancer control program is 

necessary globally. Physical activity, exercise, 

and training are essential health behaviors that 

play a vital role in the prevention and treatment of 

cancer, along with different mechanisms to 

prevent its recurrence and complications of 

treatment and improve the quality of life of these 

patients. However, the mechanism of physical 

activity related to tumor growth inhibition is not 

fully understood, and the role of new regulators, 

such as the Sperouty/Spred family, needs to be 

studied in the future. 
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